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Exhaustive percolation on random networks
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We consider propagation models that describe the spreading of an attribute, called “damage,” through the
nodes of a random network. In some systems, the average fraction of nodes that remain undamaged vanishes
in the large system limit, a phenomenon we refer to as exhaustive percolation. We derive scaling law exponents
and exact results for the distribution of the number of undamaged nodes, valid for a broad class of random
networks at the exhaustive percolation transition and in the exhaustive percolation regime. This class includes
processes that determine the set of frozen nodes in random Boolean networks with in-degree distributions that
decay sufficiently rapidly with the number of inputs. Connections between our calculational methods and
previous studies of percolation beginning from a single initial node are also pointed out. Central to our
approach is the observation that key aspects of damage spreading on a random network are fully characterized
by a single function, specifying the probability that a given node will be damaged as a function of the fraction
of damaged nodes. In addition to our analytical investigations of random networks, we present a numerical
example of exhaustive percolation on a directed lattice.

DOI: 10.1103/PhysRevE.74.036113

I. INTRODUCTION

A. Overview

Propagation models on lattices or more general graphs
describe the spreading of some discrete signal through a set
of discrete entities. In the most general terms, the signal cor-
responds to some qualitative change that causes the entity to
interact differently with its neighbors. Examples include the
spreading of damage in power grids [1,2], the spreading of
disease through a population [3-5], the spreading of a com-
puter virus on the Internet [6,7], or the alteration of gene
expression patterns in a cell due to a mutation [8,9]. In the
general case, the individual entities are represented as nodes
in a graph where the links indicate paths along which the
signal can spread [10-16]. Because the signal can be thought
of as disrupting the static or dynamical state of the original
system, we refer to its propagation as spreading damage,
though in many cases the “damage” may enhance a desired
property or simply represent some natural dynamical pro-
cess. A single instance of a given spreading process initiated
from a particular subset of nodes is often called an ava-
lanche.

In analyzing spreading processes, one is often interested
in the transition between those that die out quickly and those
that spread to a finite fraction of the system in the large-
system limit, a transition that may occur as the probability of
transmitting damage across links is varied. This percolation
transition is relevant for systems in which the fraction of
initially damaged nodes tends to zero in the limit of infinite
system size. The order parameter for the transition is the
average fraction of nodes damaged in a single avalanche,
which remains zero for small transmission probabilities and
continuously increases when the probability rises above a
threshold value. We will refer to this as the sparse percola-

*Electronic address: bjorn.samuelsson @duke.edu
"Electronic address: socolar @phy.duke.edu

1539-3755/2006/74(3)/036113(18)

036113-1

PACS number(s): 89.75.Da, 02.50.Ey, 02.10.0x, 05.50.+q

tion (SP) transition. The SP transition occurs for spreading
processes in which the probability that a node becomes dam-
aged is zero unless at least one of its neighbors is damaged.
(If this probability were nonzero, a nonzero fraction of the
nodes would always get damaged.)

For a certain class of propagation models, there is another
transition of interest. When the fraction of initially affected
nodes remains fixed as the system size is increased, the frac-
tion of nodes that remain undamaged can undergo a transi-
tion from finite values to zero at transmission probabilities
above some threshold. We refer to this as the exhaustive
percolation (EP) transition. The EP transition occurs only for
propagation models in which the probability of a node re-
maining undamaged is zero when all of its neighbors are
damaged (all of its inputs in the case of a directed graph). We
assume also that there is a nonzero probability for a node to
remain undamaged if it has at least one undamaged input.
There is then one more condition for the EP transition: the
density of directed loops of any specified size must vanish in
the large system limit. For any loop there is a finite probabil-
ity that no member of the loop will be damaged, since no
member of the loop can have all of its inputs damaged until
one of the members becomes damaged through a probabilis-
tic event. Thus EP is not observable on spatial lattices of the
type generally encountered in statistical mechanics. EP is
observable, however, on directed lattices and on graphs in
which the nodes serving as inputs to a given node are se-
lected at random.

In this paper we derive the probability distribution for the
number of undamaged nodes at the EP transition on random
graphs for a general class of propagation models exhibiting
what we call unordered binary avalanches (UBA). This is
analogous to finding the distribution of avalanche sizes at the
usual percolation transition, but here we are asking for the
distribution of the number of nodes not participating in the
avalanche.

As an application of our EP results, we consider the prob-
lem of identifying unfrozen nodes in a random Boolean net-
work (RBN). In a RBN, each node has a binary state that is
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updated according to a rule that takes the values of some
other nodes as inputs. The dynamics of RBNs has been in-
vestigated extensively; see, e.g., [17-25]. A RBN can have
several dynamical attractors, but some nodes might have the
same value at all times on all attractors. Such nodes are
called stable and the set of stable nodes is important for the
dynamics in RBNs [26-28].

Almost all stable nodes in a broad class of RBNs can be
identified through a dynamic process that was introduced by
Flyvbjerg [26] and formalized to facilitate numeric simula-
tions by Bilke and Sjunnesson [27]. We call the stable nodes
that can be identified by this dynamic process “frozen” (and
nodes that are not frozen are called ‘“‘unfrozen”). Provided
that the Boolean rule distribution is symmetric with respect
to inversion of any subset of inputs, the set of frozen nodes
can be identified through an UBA in which frozen inputs
cause new nodes to become frozen (damaged). Most rule
distributions that have been examined in the literature exhibit
this symmetry. The requirement is satisfied, for example, for
any model that assigns given probability p for obtaining a 1
in each entry of the truth table for each node.

This paper is organized as follows. We first develop the
notation and basic definitions required for discussing UBAs
in general. In Sec. I B, we give an introduction to the UBA
formalism from the perspective of percolation processes. A
more formal description is given in Sec. II, followed by a
numerical illustration of the basic concepts. In Sec. III, we
present analytic derivations for UBA in random networks
with emphasis on EP and the EP transition. We also present
explicit results for the special case of Erdés-Rényi networks
with a natural choice for the avalanche rules.

In Sec. IV we show how to apply the UBA formalism to
obtain the statistics of frozen nodes in two-input RBNs. In
the present context, this serves as an illustration of the gen-
eral theory, but this particular example was also the primary
motivation for studying EP. The results on RBNs are consis-
tent with those found by Kaufman, Mihaljev, and Drossel
[29]. The main advantage of using the EP formalism for this
problem is that it makes clear how the calculation can be
extended to networks with more than two inputs per node,
including networks with an in-degree distribution that (with
a low probability) allows arbitrarily large in-degrees.

B. Basic definitions

An unordered binary avalanche (UBA) is defined as a
spreading process with the following properties.

(i) Binary states. The state of each node can be character-
ized as a binary variable s, with s=0 meaning undamaged
and s=1 meaning damaged.

(i1) Boolean rules. The state of each node is determined
by a Boolean function of the states of its input nodes.

(ili) Order independence. The probability of having a
given set of nodes damaged at the end of the process does
not depend upon the order in which nodes are chosen for
updating.

Order independence refers to the dynamics of the spread-
ing process or a simulation of it. In such a simulation, one
typically chooses a site and updates it according to a rule
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depending on the states of sites that provide inputs to it,
repeating the process until a test of every site yields no
change in the state of the system. We are interested in cases
where the order in which sites are chosen for possible updat-
ing has no bearing on the final state of the system.

UBA is a natural extension of site or bond percolation. To
determine the avalanche size distribution in site percolation,
for example, one identifies an initial subset of damaged sites
and then tests neighbors of damaged sites to see whether the
damage spreads to them. After a given site is tested for the
first time, its value is permanently fixed. The process is iter-
ated until no new damaged sites are generated. See, e.g., Ref.
[30]. This method of investigating site percolation is equiva-
lent to assigning all sites a value, then beginning with a
damaged site and determining all of the damaged sites in a
connected cluster. Site percolation where each site has the
probability p to be occupied can be recast as an UBA system
as follows. Let each site be associated with a rule that is an
OR rule of all of its neighbors with probability p and is a
constant 0 with probability 1—p. Then the above described
site percolation is achieved by first selecting the rules and
clamping the value of a given site to 1, and then repeatedly
updating the system according to the Boolean rules. In this
situation, the ls in the final state mark a site percolation
cluster. A more practical way of simulating the same UBA is
to determine probabilistically the Boolean rule at each site
only when that site is first encountered in the percolation
process, and to update only those nodes where the rules have
been determined.

To ensure order independence in UBA, it is sufficient to
require that each Boolean function is nondecreasing, mean-
ing that if one of the inputs to the rule changes from O to 1,
the output is not allowed to change from 1 to 0. For nonde-
creasing Boolean functions, if a specific node is eventually
going to be assigned the value 1 during an avalanche, updat-
ing other nodes to 1 first cannot change the outcome.

We are particularly interested in UBAs that are initiated
by damage at a set of nodes comprising a nonzero fraction of
the total number of nodes. Such a process would be relevant,
for example, if the probability that any given node is dam-
aged at the start is independent of the system size.

To clarify both the distinction between EP (exhaustive
percolation) and SP (sparse percolation) and the similarities
between them, we describe a particular case of a propagation
model that exhibits both transitions. Consider a graph with a
total of N nodes, some of which have three input links each,
while the others have no input links at all. The graph is
random in that the node supplying the input value on any
given link is selected at random, but stays fixed throughout
the avalanche. Let v, be the fraction of nodes with no inputs.
Define a spreading process as follows: The initial condition
is that all nodes with no inputs are considered damaged.
Each other node is now selected in turn to see whether the
damage spreads to it. If a node has one damaged input, the
probability that it will be damaged is p,; if it has two dam-
aged inputs, the probability of damage is p, (with p,=p));
and nodes with three damaged inputs are guaranteed to be-
come damaged (p;=1). These probabilities are realized, for
example, by the following Boolean rule distribution: a three-
input OR rule with probability p;; a three-input majority rule

036113-2



EXHAUSTIVE PERCOLATION ON RANDOM NETWORKS

with probability p,—p;; and a three-input AND rule with
probability 1-p».

As N goes to infinity, the number of initially damaged
nodes can be a nonzero number that grows slower than N,
meaning that v, goes to zero as N goes to infinity. In this
limit, the SP transition occurs at p;=1/3 and the spreading
from each initially damaged node is described by a Galton-
Watson process. In a Galton-Watson process, a tree is created
by adding branches to existing nodes, with the number of
branches emerging from each node drawn from a fixed prob-
ability distribution. Such branching processes have been in-
vestigated extensively. (See, e.g., Ref. [31].) In particular, the
correspondence to Galton-Watson processes means that for
critical SP, the probability of finding n damaged nodes scales
like n=*2 for 1 <n<N [9,32].

For any nonzero value of v, the EP transition occurs for
p» satisfying (1-p,)(1-vy)=1/3 (assuming that this value
of p, is greater than p,;.) The analysis described in Sec. III
provides a method of calculating the probability P(u) of hav-
ing u undamaged nodes in this case. The result in the large N
limit is P(u) ~ P(0)u~""? for large u. A difference between EP
and SP is that both P(0) and the cutoff on the u~"? distribu-
tion scale with N for EP, while for SP only the cutoff scales
with N.

II. INTRODUCTION TO EXHAUSTIVE PERCOLATION

A. Formal description of UBA

We now describe a formalism and establish some notation
that is suitable for a detailed treatment of UBA. Let N denote
the number of nodes in a network with a specified set of
links and let the nodes be indexed by j=1,...,N. The net-
work state is described by the vector s={s;,...,sy}. Let K
denote the number of inputs to node j, and let k; denote the
vector of K f inputs to node j. Furthermore, let R denote a
Boolean function and let IT,(R) denote the initial probability
that node j has the rule R. [It is required that R has precisely
K; inputs for IT,(R) to be nonzero. ]

To efficiently simulate UBA, we keep track of the infor-
mation that is known about each node at each step in the
process. In particular, it is important to keep track of whether
or not the change from O to 1 of a given input has already
been accounted for in determining the output. The simplest
way to do this is to introduce an extra state 0" that labels a
site whose rule R implies an output value of 1 but for which
the update to 1 has not yet been implemented. When a node
changes its state from 0O to 0", it is a silent change in the
sense that the Boolean rules at the other nodes treat an input
0" exactly the same as 0. To retrieve the final state of the
network, all occurrences of 0° must be updated to 1. When a
single update to 1 is made, the information that the given
node has value 1 is passed along to all nodes with inputs
from it. The values of these nodes may then change from 0 to
0°. The conditional probability that the value of node i is
updated from 0 to 0" when s;, changes value from 0" to 1, is
given by

Py(k;) — Py (k;)

1-P (k) 0

U,‘(S,j) =

where k! is the value of k; after s ; has been updated and

P,(k;) is the probability that R,(k;) =1,
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Pi(k) = E R(k)IL(R). (2)
R

The numerator in Eq. (1) is the probability that R; produces a
1 after the update of node j minus the probability that R;
produced a 1 before the update. The denominator is the prob-
ability that node i had the value 0 before the update.

Let IT,(1) denote the probability that the rule at node i has
output 1 regardless of its input values. If some particular
nodes are selected for initiation of the UBA, II,(1) is set to
one for these nodes [which means II;(R)=0 for all other
rules].

We are now ready to present a formal algorithm for de-
termining the final state of an instance of UBA on a finite
network. We carry out the following procedure (where :=
denotes the assignment operator).

(1) s;:=0 for all j.

(2) sj:= 0" with probability I1,(1) for each j.

(3) Some j with sj=0* is selected.

(4) s;:=0" with probability U(s,j) for each i with s,=0.

(5) s;=1.

(6) Steps (3)—(5) are iterated as long as there exists a node
in state 0",

UBA can also be considered on infinite networks, but that
requires a more technical description of the process. First,
the choices of j in step (3) for both descriptions must be such
that any given j that satisfies the conditions in step (3) will
be selected in a finite number of iterations. Second, the en-
semble of final states needs to be defined in terms of a suit-
able limit process because the stopping criterion in step (6)
cannot be applied to an infinite system.

Note that the dynamics is only dependent on the probabil-
ity functions {P;(k;)}. That is, the precise rule distributions
affect the avalanche results only through their contributions
to P;. Because the Boolean rules are nondecreasing func-
tions, P;(k;) is also a nondecreasing function. In fact, every
nondecreasing function, f(k;), with values in the interval
[0,1] can be realized by P,(k;) for a suitable Boolean rule
distribution. One such rule distribution can be constructed as
follows: for each i and each k;, select a random number y
from a uniform distribution on the unit interval and set
R;(k;)=1 if and only if y <f(k;).

B. An example of EP on a lattice

To illustrate the concepts of UBA and EP, consider a di-
rected network on a two-dimensional (2D) square lattice
with periodic boundary conditions. Each node in the lattice
has integral coordinates (i, ;) where i+ is odd and the node
at (i,j) receives inputs from the two nodes at (i—1,j+1).
The rule for propagation of damage to a node is either OR or
AND, with probabilities I1; ;(OR)=r and I1; ;(AND)=1-r, re-
spectively.

Figure 1 displays an avalanche that is initiated by letting
each node be initially damaged with probability p=1/8. A
node assigned OR becomes damaged if either of its neighbors
one layer above is damaged; a node assigned AND becomes
damaged if and only if both neighbors above it are damaged.
This means that
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FIG. 1. An example of UBA on a lattice, displaying undamaged
nodes (dots), initially damaged nodes (filled circles), and nodes
damaged during the avalanche (empty circles). Each node has either
an OR rule or an AND rule with inputs from its neighbors in the row
immediately above the node. The probability for a node to be ini-
tially damaged is p=1/8 and the probability for obtaining an OR
rule is r=0.3. Periodic boundary conditions are used and the first
row and column are repeated in gray after the last row and column
to illustrate the periodic boundary conditions.

O 1f k(l,]) = (0,0)
Pk =\r ifkge {(0,1),(1,0)} 3)

Note that clusters of damaged nodes formed in an avalanche
initiated by a single damaged node cannot contain any holes,
since the uppermost undamaged node in the hole would have
to have two damaged inputs and hence would become dam-
aged when updated.

For localized initial damage, the SP threshold is found at
r=1/2. Above this value of r, domains of damage tend to
widen as the avalanche proceeds. Since the growing cluster
has no holes, this is simultaneously an EP transition. The EP
transition can be found for smaller values of r in lattices
where each node is initially damaged with a given nonzero
probability p. [For every initially damaged node, I1; (1) is
set to 1, meaning that P,(k;)=1 for every value of kg ;.]

Figure 2 shows the average number of unaffected nodes
as a function of r for p=1/8 on lattices with periodic bound-
ary conditions. The numerics displayed in Fig. 2 clearly sug-
gest that there is a second-order EP phase transition. Further-
more, these numerical results suggest that the avalanche in
Fig. 1 is within the parameter regime for EP and that EP does
not occur in this case due to finite size effects.

For the case r=0, it is possible to map the EP transition
onto ordinary directed site percolation on the same lattice.
When all nodes in the lattice have AND rules, the following
algorithm may be used to determine whether a given node
will be damaged: select a node; put a mark on the selected
node unless it is initially damaged; and recursively mark
each initially undamaged node that has an output to a marked
node. The selected node will get damaged if and only if this
recursion ends in a finite number of steps. The algorithm
describes ordinary directed site percolation where the ini-
tially undamaged (damaged) nodes are considered active (in-
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FIG. 2. The average fraction of undamaged nodes for UBA on a
lattice of the type shown in Fig. 1, as a function of the selection
probability p for OR rules and the probability p=1/8 for initial
damage. The lattice has periodic boundary conditions and covers a
square that has a side of 10, 102, 103, and 10* lattice points, respec-
tively, with steeper curves for larger systems. The statistical uncer-
tainty in the estimated mean is less than the linewidth.

active) sites and the process propagates in the opposite di-
rection relative to the UBA. We therefore expect the EP
transition to occur for a value of p equal to 1-p., where
p.=0.70549 is the threshold for directed site percolation [33]
and we have confirmed this with numerical tests. Further
study of EP on the lattice is beyond the scope of this paper.

C. Suppression of EP by resistant motifs

In the lattice example above, the fact that the network had
no feedback loops smaller than the lattice size was impor-
tant. In general, EP is suppressed by the presence of short
feedback loops. As already noted, for EP to occur, it is re-
quired that the output of each rule in the rule distribution is
one if all of its inputs have the value 1. Otherwise, there
would be a finite fraction of nodes that keep the value O
regardless of the influence from the rest of the network. Gen-
eralization of this reasoning allows us to rule out EP in other
situations, indicating that EP is most likely to occur in di-
rected or highly disordered networks. To pursue this idea, we
introduce the notion of resistant motifs.

A motif is a small network with a particular arrangement
of internal links. A given motif may occur many times in a
network with different rules assigned to its nodes and with
different configurations of external inputs. A motif is resis-
tant with respect to a given ensemble of rule assignments if
the probability of damage entering the motif when all exter-
nal inputs are damaged is strictly less than unity. For the rule
distributions that we consider for the EP transition in random
networks, each node has a nonzero probability of being as-
signed a rule that sets its output to O if at least one of its
inputs is 0. Thus when all of the nodes in a feedback loop of
any length have the value O, there is a nonzero probability
that they will all remain O even if all external inputs to the
loop are set to 1. Every feedback loop of a given length is
therefore a resistant motif.

If the number of occurrences of a resistant motif grows
linearly with the network size, there will in total be a finite
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fraction of nodes that remain unaffected with a finite prob-
ability. For such networks, EP cannot occur in the limit of
large systems. Examples include typically studied regular lat-
tices and small world networks with link directions assigned
so that short feedback loops are prevalent.

The problem of resistant motifs can be avoided in random
networks having a mean indegree (K) that is well defined
and independent of N, in which case the number of feedback
loops of a given length approaches a constant. Though the
total number of resistant motifs may grow with system size,
the larger motifs have a low probability of avoiding damage.
For large N, the out-degree distribution is a Poisson distribu-
tion with a mean value of (K). The outputs emerging from a
given node form a tree with approximately (K)™ nodes at the
mth level. Thus, the probability for a given node to be part of
a cycle of m nodes is approximately (K)"/N, which means
that the typical number of feedback loops of length m is
approximately (K)™/m. On the other hand, the loop may con-
tain either initially damaged nodes or some rules that allow
damage to enter from external inputs. The probability that
this will not occur decays exponentially with m. If the decay
is faster than (K)™™, the density of nodes in undamaged re-
sistant motifs will approach zero.

In summary, EP (for the considered type of rule distribu-
tions) is excluded on lattices with a high density of feedback
loops. For random networks, however, the fraction of nodes
in undamaged resistant motifs can go to zero in the large N
limit. This property allows EP to occur on random networks
as demonstrated in the following section.

III. EP ON RANDOM NETWORKS
A. Criteria for EP

Consider a network such that the inputs to each node are
chosen randomly and uniformly from all nodes in the net-
work and the probability functions {P,(k;)} are determined
from a given distribution of Boolean rules. For such net-
works, UBA can be handled analytically.

Define g(x) as the probability for a rule in the random
network to output 1 if each input has the value 1 with prob-
ability x. The function g reflects the probability for propaga-
tion of damage to a single node, for the considered instance
of UBA. We refer to g as the damage propagation function.
In random networks, P;(k;) is independent of i and can be
replaced by P,(Kk). Let K denote the number of components
of Kk, i.e., the number of inputs to the considered node. g(x)
can then be expressed as

g =2 PK) X K(1-0KP(K), (4)

k=0 ke{0,1}K

where I is the number of 1s in k and P(K) is the probability
to draw a rule with K inputs.

Let N denote the total number of nodes, and let n, ny,
and n; denote the number of nodes with the values 0, 0, and
1, respectively. With these definitions and the fact that

PHYSICAL REVIEW E 74, 036113 (2006)

Ui(s,j) is independent of i for the random network, the role
of {P,(k,)} is taken over by g(n;/N) and Eq. (1) is replaced
by

_ g(n{/N) - g(n/N)

Vs ) =S (5)

where nj=n;+1. This means that the size of the network, the
number of initially damaged nodes, and the damage propa-
gation function g taken together are sufficient to uniquely
determine the stochastic spreading process.

After one pass of the update steps (3)—(5) (from Sec.
IT A), the new values n{ and n(')* of ny and ny+ are given by

ny=ny—95 (6)
and
ng=ng+ 06— 1, (7)
where
=B, [U(s.j)]. ®8)

with B, (a) being a stochastic function that returns the num-
ber of selected items among » items if the selection probabil-
ity for each of them is a. The avalanche ends when ny+=0.

The number of damaged nodes n in a complete avalanche
is the final value of n;, whereas the number of undamaged
nodes u is the final value of n,. An order parameter for the
system is ¢=limy_,..{n/N), where the average is taken over
the ensemble of networks. The SP transition is found when ¢
changes from zero to a nonzero value, whereas the EP tran-
sition is found when ¢ reaches 1.

To understand the typical development of an avalanche, it
is convenient to change from the variables ng, ny+, and ny,
which are constrained to sum to N, to the variables x;
=n,/N and

L)

1—8(351).

)

c

As long as ny~>0, the average value of ¢ after a single
update is given by

(ng)
N ——— 10
(") = () (10)
=”o—0[g(X§)—g(X1)] (11)
1-g(x))
=c. (12)

Hence, as long as ng+>0 for all members of an ensemble of
avalanches, (c) (the average of ¢ over the ensemble) is con-
served as the avalanche proceeds.

From Egs. (5)—(8) and the definition of ¢, the variance in
¢ can be calculated. We begin by computing the increment of
the variance due to one update step, o2(c’). To leading order
as N— o, we get
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o’(c') = %ZO{))]Z (13)
=n0U([sl,Jj[gl(;1;§§s,j)] (14)
c dg(x) (16)

:N[l _g(xl)]2 dx x=x1'

Equation (16) gives the increment of the variance of ¢ from
one update step. To get the total variance of ¢, we need to
sum over all updates from n,=0 to the desired value of n;.
Provided that there is an upper bound « such that dg(x)/dx
< k for all x, the total variance of c¢ satisfies

CK kN
l’ll > <
N1 _g(xl)] l—g(xl)

for x; <1. (Note that 1/[1-g(x)] is a nondecreasing function
because g(x) is nondecreasing.)

The avalanche is initiated with nO*Eng*, no=N-ny, and
n;=0. The process ends when ny+n;=N and we seek the
distribution of n, or n; when this happens. According to Eq.
(17), the standard deviation of ¢/N scales like 1/VN, which
implies that both ny/N and ng+/N have standard deviations
that scale like 1/VN. (x, has zero standard deviation because
n, is incremented by exactly unity on every update step.)
Thus in the large system limit, the probability of any member
of the ensemble of avalanches stopping is negligibly small as
long as ny+/N is finite, and we may treat ¢ as exactly con-
served as long as this condition holds. ‘

Using the initial values x;=0 and ny=N —n:)*, which de-
termine ¢, Eq. (9) can be rearranged to give

N—ng*
1-g(0)

Noting that ny/N=1-x;—ny/N, we see that in the large N
limit, the process continues as long as the strict inequality

Tle) < (17)

no=[1-g(x)] (18)

1- I%Iim ny/N
—x.>[1= _
1—x;>[1-g(x))] 1-20) (19)
holds, since the inequality implies that ny+/N remains finite.
Moreover, in the large N limit it is impossible to reach values
of x; for which the inequality has the opposite sign, because
the process stops when ny+ reaches zero.

Note that because of the zero probability of a node re-
maining undamaged when all of its neighbors are damaged,
we have g(1)=1, which in turn implies that Eq. (19) be-
comes an equality at x;=1. If Eq. (19) is satisfied for all x;
<1, the process will be exhaustive in the sense that it will
not end with a finite (nonzero) value of ny/N. If, on the other
hand, the inequality changes sign for x; above some thresh-
old value, then the process will terminate when the threshold

PHYSICAL REVIEW E 74, 036113 (2006)

is reached. If the left-hand side of Eq. (19) forms a tangent
line to the right-hand side of the expression at some value of
X1, the process will exhibit critical scaling laws. The critical
case for EP occurs when the tangency occurs at x;=1. Ex-
amples of these behaviors are presented below and in Sec.
Iv.

As an aside, we note that the SP transition is an instance
of criticality at x;=0. For the above-mentioned criterion of
criticality to hold at x;=0, the right-hand side of Eq. (19)
must have the value 1 and the slope —1 at x;=0. Thus, the
system 1is critical with respect to SP if limNHxng*/N =0 and

dg(x)

o | 7" 2(0). (20)

Equations (4) and (20) immediately give a criterion for
critical percolation on graphs in which every possible di-
rected link (including self-inputs) exists with an independent,
fixed probability, assuming the conventional choice in which
damage spreads to a given node with probability p from each
of its damaged neighbors. In this case we have

©

g(x)=KE=OP(K)[1 - (1-px)A], (21)
which yields
d‘i—w =p§ P(K)K (22)
X 1x=0 K=0
=p(K). (23)

This result is closely related to the well-known criterion
for the presence of a percolating cluster in an Erdés-Rényi
graph: percolation occurs when the probability pgg for the
presence of a link between two randomly selected nodes ex-
ceeds 1/N, where N is the number of nodes [34]. In the
present context, pgr is mapped to pjup, where py. is the
probability that a link exists connecting the two randomly
selected nodes and p is the probability that damage spreads
across that link. At the same time, we have (K)=p;; N. (Re-
call that K is only the indegree of a node, not the total num-
ber of links connected to it.) Thus Eq. (23), which implies
that the critical value of p is 1/(K), is consistent with the
well-known theory of Erdés-Rényi graphs [34].

Equation (23) applies for any distribution of indegrees so
long as (K) is well defined and the source of each input is
selected at random (so that the outdegrees are Poisson dis-
tributed). We note that the latter condition is not met by
random regular graphs (graphs in which all nodes have the
same outdegree) because the probabilities of two nodes get-
ting an output from the same node are correlated.

SP can also be understood by the theory of Galton-Watson
processes. If limN_,wng*/N =0, the update described by Egs.
(5)—(8) is consistent with a Galton-Watson process that has a
Poisson out-degree distribution with a mean value
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_ b dg)
T 1-g0) dx |

See Refs. [9,31,32]. See Appendix C for more details on SP
in relation to known results. Cases of tangencies at interme-
diate values of x; are beyond the scope of the present work.

Returning to the question of the EP transition, it is con-
venient to change variables once again. We define xy =1
—x; and g(xq¢*) =1-g(x). In words, g(x) is the probability
that a randomly selected node will output O given that each
of its inputs has the value 0 with probability x. We refer to ¢
as the damage control function as it characterizes the prob-
ability that damage will be prevented from spreading to a
single node. Equation (19) is then transformed to

(24)

1 = lim nge/N
N—o
Yoo+ > 4l ) — . (25)
q(1)
Critical EP is found when the left-hand side of Eq. (25)
forms a tangent line to the right-hand side of the expression
at x0*=0. At criticality, the right-hand side of Eq. (25)
should have the value 0 and the slope 1. Hence, the condi-
tions ¢(0)=0 and

dgx)|  q(1)
dx |, 1-ng/N

(26)

are required for an EP transition.

Example: EP on random digraphs. We now consider the
special case of graphs in which every possible directed link
(including self-inputs) exists with an independent, fixed
probability. (We have already discussed SP on such graphs.)
If damage spreads along each directed link with probability
p, there is no EP transition because there is a nonzero prob-
ability for a node to remain undamaged when all of its inputs
are damaged. A minimal change that allows EP on such
graphs is to give a special treatment to nodes whose inputs
are all damaged, in which case the considered node should
always get damaged. For the same reason, all nodes with no
inputs must be initially damaged. Other nodes might also be
initially damaged, and we let this happen with a given prob-
ability p for each node with at least one input. For such a
network, we can calculate the damage propagation function
according to

©

g)= 2 P(K)[1-(1-p0)¥+(1-p)*K]  (27)
K=0

=1- e—<K>ﬂx(1 _ e—<K>(1—x))_ (28)
The corresponding damage control function becomes
g(x) = e—<K>p<1—x)(1 — e—<K>x). (29)

A necessary condition for the EP transition is derived from
Eq. (26), yielding

(Kye ) = 1%,)' (30)

For the EP transition to occur, it is also required that
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FIG. 3. Phase diagram for EP on random digraphs, where dam-
age spreads along each directed link with probability p and a node
is guaranteed to get damaged in the special case that all of its inputs
are connected to damaged nodes. All nodes with zero inputs are
initially damaged, and the other nodes are initially damaged with
probability p. The gray area bounded by a solid line shows the
region where EP occurs for p=0 and the dashed lines show the EP
transition when p has the values 1/4, 1/2, and 3/4, respectively.

Jx)=x-gx)(1-p)=0 (31

for all x € [0, 1] according to Eq. (25). If both Egs. (30) and
(31) are satisfied, the EP transition occurs at the value of p
given by Eq. (30),

_ In{K) + In(1 - p)
P2y

Equation (30) turns out to be a sufficient and necessary
condition for the EP transition. Provided that Eq. (30) holds,
the first derivative satisfies f’(0)=0. From the observation
Sf"(x)<0, it is then straightforward to show that f(x) has no
local minimum on the interval (0,1). Since f(0)=0 and
f(1)>0, Eq. (31) holds for all x [0, 1].

It is instructive to examine the phase diagram at fixed p. A
negative value of p_ indicates that the system is always in the
EP regime, so for (K) <1 the system exhibits EP and it is not
possible to observe a transition. For (K)> 1, an EP transition
can be observed at p=p.. A curious feature of this system is
that p, is not a monotonic function of (K), having a maxi-
mum value of (1-p)/e at (K)=e/(1-p) and approaching
zero as (K) approaches infinity. Thus if p is held fixed at any
value between zero and (1-p)/e, the system will undergo
two transitions as (K) is increased from zero. The system
will begin in the EP regime (i.e., p>p.), undergo a transition
to subcritical behavior at some (K), then reenter the EP re-
gime for a higher value of (K). The calculated phase diagram
is shown in Fig. 3 and has been verified by direct numerical
simulations of avalanches. Roughly speaking, at low (K) EP
occurs due to the high density of initially damaged nodes
with no inputs. At high (K), on the other hand, EP occurs due
to the high probability of nodes being damaged because of
their large number of inputs.

(32)
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B. The probability of complete coverage

An important quantity associated with EP is the probabil-
ity of an avalanche yielding complete coverage of the sys-
tem; i.e., the probability that all sites are damaged by the
UBA so that u=0. Let Poc(N, q;ng,ng+) denote the probabil-
ity that an UBA on a random network will yield complete
coverage for a system with a given network size N, a given
damage control function ¢, and starting with particular val-
ues of ny and ny+. For future convenience we also define
Pcc(N, ) to be the probability for complete coverage assum-
ing that each node is initially damaged with probability 1
—¢(1) and we average over the corresponding probability
distribution for n>.

To calculate Poc(N,q;ng,ngt), we note that

Pce(N,g;m,0)=0 if m>0, (33)

since the process stops when ny=0. We also have

Pcc(N,q;0,m)=1 for any m, (34)

since updating can never create 0s. These values of Pqc can
be used for recursive calculation of Pcc. Let ny o+ denote
ng+ng+, or Nxgo+. Performing steps (3)—(5) (from Sec. IT A)
one time decreases 7+ by 1 as described by Egs. (5)—(8).
This means that Poc(N,q;ng,ny*) can be calculated for all
ngo*=m if Pcc(N,q;Vlo,n()*) is known for all n0,0*:m—l.
The recursion starts at no=0 with Pcc(N,g;0,0)=1 and
uses the boundary conditions Pcc(N,q;ngq+,0)=0 and
Pcc(N.q;0,nq0%)=1 for ngo+>0.

For large N, Pcc can be calculated in the framework of a
continuous approximation. Let p(ng+,c) denote a continu-
ous version of Pqc(N,q;ng,ny*). Then, the boundary condi-
tions Pcc(N,q3ng0+,0)=0 and Pcc(N,q;0,n00*)=1 are ex-
pressed as

P(19,0%, Cmax(X0,0*)) =0, (35)
and
plnge=0)=1, (36)
where
o,0*

Cmax(-xo,o*) = (37)

q(xo,07)

In the continuous approximation, the recurrence relation
that can be derived from Egs. (5)—(8) is transformed to a
partial differential equation. In such an update, the change
ng o+ decreases by unity and, for large N, the change in c is
much less than c itself. In the continuous approximation, this
means that p(ng g+, c) satisfies a partial differential equation
of the form

ip
an(),()*

p Fp
= hy(ng g+, ¢)—— + hy(ng g+, ¢)—, (38)
dc dc
where h(ngg*,c) and hy(ngo+,c) are functions to be deter-
mined. This is recognizable as a one-dimensional (1D) dif-

fusion equation in which ny o+ plays the role of time and c¢
plays the role of space. Note that later times in the diffusion
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equation correspond to earlier stages of the UBA, since n ¢
decreases as nodes are converted to 1s. The boundary con-
ditions on the diffusion are given by Egs. (35) and (37). We
are interested in computing p(n o+, c) for values of ng o+ and
¢ corresponding to n0*=ng* and n;=0.

The fact that the average of ¢ is constant means that the
coefficient of the drift term in the diffusion equation must
vanish; ie., h(ngg+,c)=0. The diffusion coefficient,
hy(ng o+, c), is given by

hy=3a%(c"), (39)
where ¢?(c’) is the variance of ¢’ when a fixed c is updated.

Using Egs. (16) and (39) and converting g’s to ¢’s, we
find

p ¢ dgx) &p
anger 2N[g(xo o) dx ac*

«

(40)

X=X0»0

The large N behavior of Eq. (40), with the boundary con-
ditions in Egs. (35) and (37), can be found by expanding ¢(x)
around x=0. If ¢(x) is well behaved, such an expansion can
be written as

q(x) = ayx — apx* + O(x%). (41)

This expansion can always be performed if the probability
P(K) for a node to have K inputs decays faster than K~*. In
the case that P(K) decays slower than K~*, but faster than
K73, only the residue term can be affected. See Appendix A.
In particular, the expansion is always valid if K has a maxi-
mal value.

The most interesting case in terms of asymptotic behavior
is when «; is close to 1 and a, is positive. With suitable
N-dependent transformations of p and its arguments, de-
scribed in Appendix B, the large N behavior of Eq. (40) can
be expressed in terms of a function p(7,y) determined by the
differential equation

= %%” @)
with the boundary conditions
pT1M=0 for7<O0 (43)
and
limp(75) =y fory=0. (44)

t——

The Crank-Nicholson method can be used to calculate p(z,y)
numerically in an efficient way. (See, e.g., Ref. [35].)

Appendix B shows that the probability for complete cov-
erage is given by

Pcec(N,q) = N"B5(0,N3(1 - ay)), (45)

where N= aN/a,. The calculation assumes that the ava-
lanche is initiated on the nodes whose outputs are indepen-
dent of their inputs, as accounted for in g(1).

To our knowledge, the critical point for EP has not been
investigated previously in its own right. Two special cases
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have been studied, however. First, results for numbers of
frozen and unfrozen nodes in critical RBNs can be mapped
to an EP process, as discussed in Sec. IV. In this context,
frozen nodes in the network are considered to be the dam-
aged nodes of the UBA, and the scaling with N of the num-
ber of unfrozen nodes at the phase transition has been inves-
tigated for certain class of RBNs [25,29].
Second, in the special case that g(x)=x, the exact result

ny*

Pcc(N,.X = x;no,no*) = (46)

ny + ngy*

is obtained. [See Eq. (B28) in Appendix B.] This means that
the probability for complete coverage is exactly n:)*/N. The
simplest realization of g(x)=x is provided by a network of
one-input nodes with rules that copy the input state. Such
networks have strong connections to random maps from a set
of N elements into itself. A map T is derived from a network
of one-input nodes by letting each node map to the node
from where its input is taken. In this picture, the damage
originating from one initially damaged node i, corresponds to
the set of nodes j such that 7%(j)=i for some k=0 (where T*
denotes the kth iterate of T). Such a j is called a predecessor
to i. See, e.g., Ref. [34] for an overview of the theory of
random maps and see Refs. [36,37] for results on predeces-
sors in random maps. See Appendix E for analytic results
that relate UBA to random maps.

C. On the number of damaged nodes in random networks

In Secs. IIT A and III B we focused on determining the
parameters that lead to EP (a vanishing fraction of undam-
aged nodes large N limit) and on the probability that the
number of undamaged nodes will be exactly zero (complete
coverage). We now consider the full probability distribution
for the number of nodes damaged in an avalanche in a man-
ner that provides a suitable base for understanding both SP
and EP in random networks. The calculational strategy in-
volves considering a given set of n nodes to be the damaged
set and computing the probability that this is both consistent
with all of the Boolean rules and the probability that the
avalanche will actually cover the whole set. The probability
of consistency is calculated via elementary combinatorics.
The probability of reaching the whole set is precisely the
probability of complete coverage for an avalanche on the
sub-network of n candidate nodes. For this we can directly
apply the results of the last section. For the purposes of ex-
plaining the calculation, we refer to the selected set of n
nodes as the “candidate set”.

We let P, (n) denote the probability that n nodes will be
damaged in an avalanche, averaged over the ensemble of
N-node networks with a rule distribution characterized by a
given damage propagation function g or the corresponding
damage control function g. We assume that the avalanche is
initiated by randomly selecting € nodes to set to 0", regard-
less of their Boolean rules, then setting to 0" all nodes with
rules that always output 1 for any inputs. The set of € ini-
tially damaged nodes must be a subset of the candidate set.
The probability that the candidate set contains all of the
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nodes with “always 1” rules will be taken into account by the
value of g(0) in the expression below for the consistency
probability. We use the notation ('Z) for the usual binomial
coefficient (the number of combinations of k objects chosen
from a set of m objects).

The probability P, y(n) can be expressed as

n—{¢

where P.(n,¢;N) and Péc(n,&N) are defined below. The
binomial factor counts the number of different sets of n—¢
nodes that could be damaged in a process corresponding to a
given set of € nodes that are initially damaged without regard
to their rules. P.(n,€;N) is the probability that a given choice
of n—<¢ nodes assumed to be damaged by the avalanche will
constitute a final state that is consistent with the Boolean
rules for each node, including the nodes that are initially
damaged because their rules require it. Pio(n,€;N) is the
probability that the avalanche will not die out before damag-
ing all n nodes. This factor is necessary to avoid counting
final states that contain loops of damaged nodes consistent
with the rules but unreachable because damage cannot spread
to the loop from any nodes outside the loop.

Consistency with the Boolean rules requires that the given
set of n—¢ nodes damaged in the avalanche have inputs that
cause them to be damaged. In a random network, the prob-
ability that any single node will be damaged is g(x,), where
x; is the fraction of damaged nodes. Similarly, the probabil-
ity that any node will nor be damaged is 1—g(x,). We are
considering candidate sets of damaged nodes with x;=n/N.
Thus we have

P.(n,¢;N) =[g(n/N)]""[1 - g(n/N)]V". (48)

Pn,N(n) =< )Pc(n’€3N) PICC(n3€9N)3 (47)

The computation of Péc(n,(? ;:N) involves the rule distri-
bution on the restricted network formed by the candidate set
with all inputs from the undamaged nodes removed. This
distribution, g'(x), is different from g(x) because P, already
accounts for rules that are not consistent with the pattern of
damage. Thus the spreading of damage on the n-node net-
work involves g(nx/N), the probability that a rule outputs 1
when a fraction x of the n-node candidate set is damaged.
The probability must be normalized such that it goes to unity
when x goes to 1. (We know that a node in the n-node set
should get damaged if all of its inputs are damaged.) Thus
we have

. B g(nx/N)
gy (X) = S(IN) (49)

or, equivalently,

q(w/N + (1 = u/N)x) — q(u/N)
1 —g(u/N)

an ) = (50)
(Recall that u=N—n is the number of undamaged nodes after
an avalanche.)

There are two cases of interest for the probability of com-
plete coverage of the candidate set. For EP, g(0)>0 and the
fixed number € of nodes arbitrarily selected for damage is
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irrelevant compared to the finite fraction of nodes with rules
that produce damage for any combination of inputs. In this
case, we assume ¢ =0, which allows reduction of Pcc to its
two-argument form defined at the beginning of Sec. III B:

Pic(n,05N) = Pec(n, gy y_)- (51)

For SP, we have g(0)=0 so the avalanche must be initi-
ated with a nonzero value of €. In this case we have

P]CC(n,e;N) =PCC(”7Q1IV,N—n;n_€’€)~ (52)

Note that Péc(n, ¢ ;N) depends on N only through ¢'.

For notational convenience, we now let P stand for
whichever expression on the right-hand side of Egs. (51) or
(52) is relevant, and we use u where N—n would be the
strictly proper form. By combining Eqgs. (47) and (48), we
get

N-¢ n—{ upl
Past)=( "~ Ly - gl (53)

To make some important features of Eq. (53) apparent, we
introduce the functions

n

plm) =~ —. (54)
k) = — (n”i o (55)
and
o
Then Eq. (53) can be rewritten as
sl = RO T (g(’ pe | teemet.
(57)
Stirling’s formula,
nl o~ \2_7711';— (58)
yields
p(n) = JEE;Z (59)
and
p(Z()ZF\)/()M) - \r/zq;u/N' (60

The factor 7(n,€)/ (N, €) is approximately 1 for large n
and satisfies
mn ) _
(N, 5)

for n=<N, with equality if n=N or €=1 or £=0. The only
factors in Eq. (57) that can show exponential dependence on

(61)

PHYSICAL REVIEW E 74, 036113 (2006)

N are the G and P(. factors. Because Pl is a probability
(and therefore cannot exceed unity) and G(x) <1 with equal-
ity if and only if g(x)=x, P, y(n) vanishes exponentially as N
goes to infinity for any fixed n/N such that g(n/N)#n/N.
This is consistent with the above result that the probability of
an avalanche stopping with x; # g(x;) is vanishingly small.
[See Egs. (19) and (25).]

For EP, we are interested in the number of undamaged
nodes, u. We let

Py y(u) =P, n(N—u) (62)
and
009 = G(1 —x) = ( q(x)) (ﬁ) (63)
- X X

For EP, g(0)>0 and a fixed € is irrelevant when N— oo,
Hence, we let £=0 and rewrite Eq. (57) as

p(n)p(u)

o) =———[Qu/N)]"Pic. (64)

u N( ) =

To some respects, P,y is similar to P, ,: the factor
[p(u)p(n)]/p(N) is fully symmetric with respect to inter-
change of n and u; and the role of G(n/N) in Eq. (57) is
identical to the role of Q(u/N) in Eq. (64). However, the
behavior of PCC for n<<N given by Eq. (52) is significantly
different from the behavior of PCC for u<<N given by Eq.
(51).

For EP, we consider damage control functions g(x) that
can be expanded according to Eq. (41). For supercritical EP,
with a; <1, P, (1) decays exponentially with u. In Appen-
dix D 1, we demonstrate that

tim Py = (1 - ) " (63)
1-
~ /_al eu(l—a])alitu—l/Z. (66)
\1'277
For critical EP, Eq. (45) gives

Pic(n,05N) = ~ i Bp(0,a"3(1 - @),

(67)

|
Pec(n,qyn_,

where 7i= an/a; and @, and a, are the first two coefficients
of the power series expansion of ¢'(x) about x=0. With «,
=1 and a,>0, a Taylor expansion of log Q(x) about x=0
gives

23
ax
o) zexp(— B ) (68)
for small x. This yields that the typical number of undam-
aged nodes, u, scales like N*°. In Appendix D 2, we derive

the asymptotic distribution of u for large N. With t=N"*y

=(ay/N)*3u, we find that the large N limit of the probability
density for i is
exp[— (172)"

~3
RN 50,0, (69)
\1’2

P(n) =
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Equation (57) is suitable for understanding SP as well as
EP. For SP, g(0)=0 and ¢£>0. In the large N limit, SP is a
branching process with a Poisson distribution in the number
of branches from each node. The average number of
branches per node is given by the derivative of g(x) at x=0,
because lim,_,og(x)/x is the average number of nodes that
will be damaged in one update as a direct consequence of
damaging a single node in the large network limit. In Appen-
dix C, we re-derive known results on SP in the framework of
our formalism.

IV. AN APPLICATION: FROZEN NODES IN RANDOM
BOOLEAN NETWORKS

An important application of our results on EP in random
networks is the determination of the size distribution for the
set of unfrozen nodes in two-input random Boolean net-
works, a subject of interest since the introduction of the
Kauffman model in 1969 [17]. The Kauffman model was
originally proposed as a vehicle for studying aspects of the
complex dynamics of transcriptional networks within cells.

In a Boolean network, there are usually some nodes that
will reach a fixed final state after a transient time regardless
of the initial state of the network. For most random Boolean
networks, nearly all of these nodes can be found by a proce-
dure introduced in Ref. [26] and applied numerically in Ref.
[27]. We refer to nodes identified by this procedure as frozen.

The nodes that cannot be identified as frozen are labeled
unfrozen. Their output may switch on and off for all time or
simply have different values on different attractors of the
network dynamics. A frozen node will always reach its fixed
final state regardless of the initial state of the network. The
converse is not true; an unfrozen node can have a fixed final
state that is independent of the initial state due to correlations
that are not accounted for in the identification procedure for
frozen nodes. In a typical random Boolean network, the
number of nodes that are mislabeled in this sense is negli-
gible [27]. For the purposes of investigating dynamics of the
network at long times, one is interested in the size of the
unfrozen set.

The procedure for identification of the frozen nodes starts
by marking all nodes with a constant output function as fro-
zen. There may then be nodes that, as a consequence of
receiving one or many inputs from frozen nodes, will also
produce a constant output. These nodes are also marked as
frozen, and the process continues iteratively until there are
no further nodes that can be identified as frozen.

We note here that the process of finding frozen nodes in a
RBN can often be framed as an UBA, where the property of
being frozen corresponds to damage. That is, the process of
identifying frozen nodes involves continually checking all
nodes to see whether their inputs are frozen in such a way
that they themselves become frozen, a process which satis-
fies the conditions for UBA. The damage propagation and
damage control functions for the UBA are determined by the
relative weights of different Boolean logic functions in the
RBN. By changing these weights, one can observe a transi-
tion in the dynamical behavior of RBNs corresponding pre-
cisely to the EP transition in the UBA. We consider here
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RBNs with exactly two inputs at each node, with some ex-
plicit choices for the weights of the Boolean logic functions
that permit observation of both sides of the transition.

The only restriction required for mapping the freezing of
nodes in a RBN to an UBA system is that the logic functions
in the RBN be symmetric with respect to the probability of
freezing being due to TRUE and FALSE inputs. That is, the
probability that a node with a certain set of frozen inputs will
itself be frozen should not depend on the values of the frozen
inputs. This condition is satisfied for the most commonly
investigated classes of rule distributions, where there is a
given probability p for obtaining a 1 at each entry in the truth
table for each rule. If the above mentioned symmetry condi-
tion were violated, it would be necessary to distinguish
nodes frozen TRUE from nodes frozen FALSE, which would
mean that the state of a node could not be specified by a
binary variable. For the rest of this section we consider only
RBNs that respect the symmetry condition.

It is useful to distinguish different types of Boolean logic
functions. A canalizing rule is one for which the output is
independent of one of the inputs for at least one value of the
other input. Among the 16 possible two-input Boolean rules,
two rules are constant (“always on” or “always off”), 12
rules are nonconstant and canalizing, and two rules are non-
canalizing (XOR and not-XOR). The original version of the
Kauffman model assumes that all two-input Boolean rules
are equally likely, which turns out to give critical dynamics.

Let p; denote the probability that a randomly selected
node’s output is frozen if exactly i of its inputs are frozen.
The damage propagation function g(x) can be expressed di-
rectly in terms of p;:

g(x) =po(1 = x)? +2p;x(1 - x) + pox*. (70)

Nodes with constant rules are guaranteed to be frozen.
(These nodes will initiate the UBA.) Nodes with nonconstant
canalizing rules are unfrozen if both inputs are unfrozen, and
they are frozen with a probability of 1/2 if exactly one ran-
domly selected input is frozen. Nodes with rules that are
noncanalizing become frozen if and only if both of their
inputs are frozen. Finally, if both inputs are frozen, the out-
put of any two-input rule is frozen. Thus for the two-input
Kauffman model, p,=1/8, p;=1/2, and p,=1.

If the two noncanalizing rules in the two-input Kauffman
model are replaced by canalizing rules, p; becomes 9/16,
whereas p, and p, are unchanged. Such networks exhibit
supercritical EP. To get a subcritical network, we replace two
of the canalizing rules with noncanalizing rules and get p,
=7/16. (Note that some care must be taken to maintain the
TRUE-FALSE symmetry mentioned above.) The functions g(x)
and G(x) for critical, supercritical, and subcritical rule distri-
butions are shown in Fig. 4.

As can be seen from Fig. 4, a small change in g(x) may
lead to a qualitative change in G(x) for rule distributions
close to criticality. Such changes have a strong impact on the
avalanche size distribution for large N. Figure 5 shows the
probability density distribution of the fraction, n/N, of nodes
that are affected by avalanches in networks with the above
mentioned rule distributions. The probability distributions
are obtained by recursive calculation of the distribution of

036113-11



BJORN SAMUELSSON AND JOSHUA E. S. SOCOLAR

{6
1.0 T

@)

0oL
0.0 05 1.0

G
1.000 T

)]

T
1

0.99%

T
1

0.998

0.0 0.5 1.0
x

FIG. 4. The functions (a) g(x)=1-¢(1-x) and (b) G(x)=0Q(1
—x) for three two-inputs rule distributions. All three distributions
have py=1/8 and p,=1, whereas p, takes the values 7/16, 1/2, and
9/16. The case that has p;=1/2 (marked with =) is critical with
respect to EP and corresponds to the propagation of frozen node
values in the original Kauffman model. The other cases p;=7/16
(<) and p;=9/16 (>) are subcritical and supercritical, respectively.
The dashed line in (a) shows the identity function x— x.

ng+ as n; increases. The recurrence relations are obtained
from Egs. (5)-(8) and the result is exact up to truncation
errors. To verify these calculations, we generated 10° random
Boolean networks of size N=10* for each of the above de-
scribed rule distributions. The distributions in the numbers of
frozen nodes in those networks are displayed in Fig. 6.

In Fig. 7, the probability distributions of the number of
undamaged nodes u are shown in comparison to the
asymptotic results in Egs. (65) and (69). Our analytic results
are strengthened by the data in Fig. 7 as the distributions for
finite networks approaches the predicted asymptotes. Finite
size effects are clearly visible in the critical case even for
network sizes as big as N=10°, whereas convergence in the
supercritical case is achieved for N=10°.

Kaufman, Mihaljev, and Drossel studied distributions of
unfrozen nodes in two-input critical RBNs using a method
similar to ours in that differential equations for populations
of different types of nodes are developed from a discrete
process in which frozen nodes are identified by the propaga-
tion of information from their inputs [29]. Their result for the
numbers of unfrozen nodes in two-input critical RBNs cor-
responds to a particular application of Eq. (69). In Ref. [29],
the function corresponding to P(iz) [which they call G(y)] is
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Probability density

&)

0.0

FIG. 5. The probability density distribution NP, (n) with re-
spect to the fraction of nodes (n/N) involved in an avalanche. The
rule distributions have the same g(x) as displayed in Fig. 4, showing
rule distributions that are (<) subcritical, (=) critical, and (>) su-
percritical with respect to EP. The displayed networks sizes N are
10 (large dots), 100 (small dots), 10 (bold line), 10%, 10°, and 10°
(gradually thinner lines).

determined by running a stochastic process and a numeri-
cally motivated approximation is proposed,

_
1-05V7+37
P() ~ 0.25 expl(- 1) —— 20 (71)

Vi

The scaling law P(it)> ii~'/? for small i is also derived ana-
lytically in Ref. [29].

For large x, Eqs. (42)—(44) imply p(0,x)xx for large
positive x. This means that

P@)x'VEgemﬁ—%f) (72)

for large i. Thus the large i limit of Eq. (71) differs from the
exact result by a factor of (3/4)y/2, an underestimate of
about 6%.

We are able to improve further on Eq. (71) by numerical
investigations of p(0,x) calculated by the Crank—Nicholson
method (see, e.g., [35]) using Eqgs. (42)—(44). We find that
the high-precision numerical results are fit by the function
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0 F - Z My

0.5 1.0
n/N

FIG. 6. A numeric comparison between analytic calculations
(black lines) and explicit reductions of random Boolean networks
(gray lines). For both cases, the probability density distribution
NP, y(n) is displayed as a function of n/N. The rule distributions
have the same g(x) as displayed in Figs. 4 and 5, showing rule
distributions that are (<) subcritical, (=) critical, and (>) super-
critical with respect to EP. The UBA rule distributions are realized
in random Boolean networks by rule distributions with the follow-
ing respective selection probabilities: 1/8, 1/4, 5/8-p,, and p, for
a constant rule, a rule that depends on exactly one input, a canaliz-
ing rule that depends on two inputs, and a two-input reversible rule.
The values of p, are (<) 0, (=) 1/8, and (>) 1/4. For each rule
distribution, 10° networks were tested.

P@) 2 ( 1~3><1 1 )
i) =~ \| —exp| - —ii +
N 7P\ 72 30487 + 4272 + 4767

(73)

with a relative error that is maximally 0.25% and vanishing
for large u.

By explicitly keeping track of the populations of nodes
with each of the different types of Boolean logic functions as
links from frozen nodes are deleted, Kaufman, Mihaljev, and
Drossel [29] also derive results for other quantities, such as
the number of links in the sub-network of unfrozen nodes.
The EP formalism described above can be applied once again
to investigate these additional quantities in a broader class of
networks. Detailed results for RBNs with various degree dis-
tributions will be presented elsewhere.

V. SUMMARY AND DISCUSSION

Unordered binary avalanches can in some cases lead to
damage on every node or almost every node of a network, a
phenomenon we have dubbed exhaustive percolation. We
have studied a broad class of random networks that can ex-
hibit EP. We have shown how to calculate the probability
Pcc(N) that complete coverage occurs (i.e., that all nodes are
damaged) and also derived expressions for the probability
distribution P(u) of the number of undamaged nodes u in the
large N limit when EP does occur. A logical curiosity in our
approach is the fact that the calculation of P(u) involves
application of the P¢ result to subnetworks containing can-
didate sets of damaged nodes.

Our primary results flow from the realization that all of
the relevant information about an UBA defined on a random
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107!
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FIG. 7. Rescaled versions of the probability distributions dis-
played in Fig. 5. (a) The probability density for the critical case,
with respect to the rescaled number of undamaged nodes, &
= (ay/ N)*Pu=u/(4N*?3); (b) the probability distribution P, n{(u) for
the supercritical case without rescaling. The displayed networks
sizes N are 10 (large dots), 100 (small dots), 10* (bold line), 10%,
10°, and 10° (gradually thinner lines). The analytically derived as-
ymptotes are shown as dashed lines. In (b), the distributions for
networks of sizes 10, 10°, and 10 are not plotted because they are
indistinguishable from the asymptotic curve.

network is contained in the damage propagation function
g(x) or, equivalently, the damage control function g(x). We
derive scaling law exponents and exact results for the distri-
bution of u that are valid for a broad class of random net-
works and Boolean rule distributions in the EP regime and
for networks at the EP critical point. This class includes the
UBAs that determine the set of frozen nodes in RBNs with
more than two inputs per node and therefore constitute a
generalization of the results on the set of unfrozen nodes in
RBNs presented in Ref. [29]. Interestingly, the asymptotic
behavior found in Ref. [29] for the distribution of u at the
critical point is shown to be valid for a broad class of net-
work problems.

For networks outside the above-mentioned class but
within the framework of UBA, we find connections to pre-
vious work on Galton-Watson processes [32] and random
maps [36]. The central result of our investigations is dis-
played in Egs. (66) and (69), which provide explicit formulas
for the probability of finding # undamaged nodes after an
avalanche runs to completion. The out-degree distributions
of the networks described by our formulas are all Poissonian,
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but the in-degree distributions may have different forms, in-
cluding power laws, so long as the probability of having
in-degree K decays faster than K. The exact nature of the
EP transition on networks with broader in-degree distribu-
tions is an interesting issue for future research. Further work
is also needed to handle correlations between input links to
different nodes; a situation that arises, for example, in ran-
dom regular graphs or networks with scale free out-degree
distributions.

Our original motivation for studying EP arose from at-
tempts to understand the dynamical behavior of RBNs. We
have described one nontrivial example of how the EP formal-
ism is relevant: the calculation of the probability distribution
for the number of unfrozen nodes in any RBN with a rule
distribution that leads to a given damage control function g
for the associated UBA. The problem of determining how
many of the unfrozen nodes are actually relevant for deter-
mining the attractor structure of the RBN can also be framed
as an EP problem, which will be addressed in a separate
publication.
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APPENDIX A: CALCULATION OF THE DAMAGE
CONTROL FUNCTION

Let pg denote the probability that a rule has K inputs, and
let Py(K,m) denote the probability that the output value is
zero of a rule with K inputs fed with m zeros and K—m ones.
Then, the damage control function is

© K K
g = 2 px > P0<K,m>(m)x'"(1 —x)fm (A1)

K=0 m=0
Equation (A1) can be written as

gx)=ag+ax+ax’®+ -+, (A2)

where

a;= 2 2 pxPo(K.m)(= 1)M<K)(If__,:) (A3)

K=i m=0 m

The expansion in Eq. (A2) is well-defined up to the first term
such that the sum in Eq. (A3) is not absolute convergent. The
factor (X)(57) scales like K for large K and Po(K,m)<1.
Hence, g; is well defined if 2¢_,K'py is convergent and this
is true if py decays faster than K=

In addition, the requirement that the output of each rule be
1 if all of its inputs are 1, yields that a,=0. Thus, the expan-
sion

q(x) = aypx — apx® + 0(x%), (A4)

is valid for all rule distributions such that px decays faster
than K~*. In the case that py decays slower than K~*, but
faster than K3, only the residue term can be affected.
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APPENDIX B: PROBABILITY FOR COMPLETE
COVERAGE

Here, we assume that the expansion in Eq. (A4) is well
defined. Then, we get

dp c &zp
= —[1+ O(nyy/N)], (B1)
0711(),0* 2a1Nn3’0* 36‘2[ 0,0 )]
and
1
Cmax(X)/IN=—+ %x +0(x?). (B2)

23] al

To remove the dependence of ng + from the leading order
term of the diffusion rate in Eq. (B1), we let t=—1/n( . By
also letting y=1-a;c/N, we rewrite Eq. (B1) to a form that
easily can be rescaled as N grows. We get

12T o(b)]

= B3
a2 ay? e (B3)

and

1+ 0()]

B4

Ymin =~
where y=yi, is the transformed value of c,,,,. The boundary
conditions are p=0 for y=y,,;, and p=1 for y=1.

The N dependence of the leading order term of the bound-
ary condition in Eq. (B4) can be removed by rescaling of y
and 7. Typically, &, >0 and this is the case that we will focus
on. [Note that Eq. (25) means that a, must be nonnegative at
the transition.] If a,=0, either g(x)=x or g(x)=x—aq,x"
+--- with m>2 (apart from some pathological special cases).
The first case g(x)=x is a special case that is convenient for
analytic calculation, whereas the latter case require calcula-
tions analogous to the calculations for a,>0. We will come
back to the case g(x)=x.

For @, >0, we rescale y and ¢ according to

F=N"y (B5)
and
7= N, (B6)
where
N=—N (B7)
@
Then,
dp 1 (9217 )
a?ziﬁ(HN ”*y)[1+0(ﬁ+,3~)], (BS)
where
Fuin=T"[1+0(z5)] (B9)

The boundary conditions are p=0 for y,,;, and p=1 for
§=N'"3. The only plausible limit of p as t—-% is p
=§/N'"3. To get a motivation that is mathematically accept-
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able, one needs to relate the original integer-based formula-
tion of the problem in Egs. (5)—(8). The large N behavior of

Eq. (8),

lim U(s,j) = 1/ng o~, (B10)
N—oo
yields
ny*
lim Pec(N,q;n9,ng%) = . (B11)
N—x }’loyo*

Equation (B11) can be shown via induction. The induction is
initiated by

lim Pc(N,q;1,0)=0 (B12)
N—o
and
(B13)

lim Pe(N,g;0,1) =1,
N—oo

which means that Eq. (B11) is true for ngg+=1. To obtain the
induction step, we assume that Eq. (B11) is true for n(')’o*
=ngyo*—1. Then, we get

n' s
lim Pec(Noging,nge) = —— (B14)
N—® }’loyo* - 1
which leads to
(g
lim Pee(N,q;n0,n9+) = ° (B15)
N—»® no’o* - 1
_ ny* + f’lo/l’l()’()* -1 (B | 6)
- noo — 1
n £
- (B17)
Ny, o*

that completes the induction step. Equation (B11) means that
the value of p approaches a linear function of y for
7=N*3/n, as N—o. Hence, the boundary condition for
t—— is p=5/N'".

Rescaling of p according to

F=N1p (B18)
gives the boundary condition
limp=5y (B19)
{——0

If Eq. (B19) is extended to be valid for all nonnegative y, the
boundary condition at =N"3 can be dropped. In the limit of
large N, Eq. (B8) becomes
p 18P
L2 (B20)
ar 29y

With p'is written on the form p(7, y), the boundary conditions
are
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pT1M=0 forf<O0 (B21)
and
limp(7y) =5 fory=0, (B22)
Tmoo
as N— oo,

The solution to Egs. (B20)-(B22) can be calculated nu-
merically. By expressing the transformed variables 7 and ¥ in
terms of more fundamental quantities, we get

- ﬁ2/3 _ g
PCC(N,q;nO’nO*) ~ N_1/3ﬁ(_ ,N1/3 |- —&"0
Mo.0* Nq(ng¢/N)

(B23)
and
_ N3 an
Pec(N.g:N — nge.ng+ zN“B”(——,Nm(l—I—O))
cc(N.q no#,1g*) p N Ng(1)
(B24)

for large N.
If the avalanche is initiated by letting each node start from
0 with probability g(1), we get

(njy = N[1-¢(1)] (B25)
and
o(ny) = \Ng(D)[1 - g(1)]. (B26)

Provided that g(x) does not depend on N, N is fixed and
the spread in y that correspond to the initial value of m will

go to zero as N— . Also, N*3/N approaches zero as N
— 0, In this case, the probability for an avalanche to yield
complete coverage is given by

Pcc(N,q) = N"B5(0,N3(1 - @), (B27)

for large N. Only the first two arguments to Pcc are kept in
Eq. (B27), because the process is fully determined by N and
q.

In the special case that g(x)=x for all x[0,1], Eq. (8)
yields a=1/n+, which is a strong form of Eq. (B10). By
using the same induction steps that lead from Eq. (B10) to
Eq. (B11), we conclude that

ngy*

Pcc(N,x = x3ng,ngr) = (B28)

ny,o*

APPENDIX C: ASYMPTOTES FOR SPARSE
PERCOLATION

Provided that the derivative of g(x) is well defined at x
=0, we let A\=g'(0), where g’(x) denotes the derivative of
g(x). Then,

lim gllv‘n(x) =X, (C1)

N—©

which means that
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lim gy, () = x (C2)
N—®©
and
- ¢
lim Pie(n, €;N) = —, (C3)
N—oo n

according to Eq. (B28). Thus, the large N limit of Eq. (57) is

¢
lim Py (n) = p(n)r(n,e)x"-ge"“-”; (C4)
£(nn)t o
=me . (C5)
For large N, Eq. (C5) yields
€
Allim Pn,N(n) ~ /Z_en(l—)\))\n—fn—3/2- (C6)
—00 \J ar

Due to the correspondence to well investigated branching
processes, Eq. (C5) is not a new result. For the special case
of £=1, Eq. (C5) is given explicitly in Ref. [32], and the
general form of Eq. (C5) can easily be obtained by the theo-
rem presented in Ref. [38].

APPENDIX D: ASYMPTOTES FOR EXHAUSTIVE
PERCOLATION

In analogy with our investigation of SP, we assume that
g(x) has a well-defined derivative at x=0 and let A=¢'(0).
For EP to be likely in the large N limit, it is required that
q(x)=<x for all x, meaning that A\ <1. The large N behavior
of Eq. (64) is partly explained by

. p(u)p(N - u)
1m

N _ u u(1-\)
TN [Q/N)]" = p(u)\"e ,

(D1)
but it remains to investigate the role of P'CC(N -u,0;N). To
this end, we consider the ratio P(le(N —u,0;N)/ Pcc(N).
[Here, we have dropped the argument g from Pcc(N,q).]

When N— o, there are two processes that influence on
this ratio: q,lv,u approaches g and N increases. The increase of
N makes the involved probabilities more sensitive for the
shrinking differences between q,lv’u and ¢g. Thus, there are two
competing processes as N— . The sensitivity with respect
to g is limited by the variance of the number of nodes with
initial state 0%, because this variance can be seen as a rescal-
ing of g. The change in ¢(x) by such a rescaling scales like
q(x)/\N for large N. If ¢(x) has a well-defined nonzero de-
rivative at x=0, the difference q}v’u(x)—q(x) scales like
q(x)/N for large N. Hence, the decrease in the difference
between q,l\,# and ¢ dominates over the increase in sensitivity,
meaning that

Pie(N=u,0:N) |

lim (D2)
N Pcc(N)
Thus,
P,
tim 22 _ et (D3)
N*)OOPCC(N)
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(uh)"

u!

e, (D4)

where (#\)" should be interpreted with the convention that
0°=1 in order to handle the case u=0 properly.

1. Limit distributions for supercritical EP

If 0<A <1 and x=0 is the only solution to g(x)=x in the
interval 0sx=<1, the exponential decay of [Q(u/N)]", in
Eq. (64), with increasing u ensures that

oo

> lim Py y(u) = 1 (D5)
u=0 N—oo
and
o0 )\ u
[nmPCC(N)]E () M= 1, (D6)
N—oo u=0 u!

Thus, limy_,.. has a unique value for each . This value can
be calculated by considering the simplest case, g(x)=\x.

From the definition of the spreading process, we get
Pcc(N,.x = )\X;no,no*) = Pcc(N,.x —> x;no,l’lo*). (D7)

Then, Eq. (B28) and averaging over initial configurations
yield

Pcc(N,.x —> )\x) =1- N, (DS)
which means that

lim Pcc(N,q) =1-A\ (D9)
N—ox

for all ¢ that satisfy the above mentioned criteria. We get

(u)\)u —u\

lim Py y(u) = (1 = N)——e™™, (D10)
N—o u!
which for large # means that
lim P, () = ——= "Ny~ 112, (D11)
N—ow \"217'

2. Scaling at the EP transition

This section aims to derive the asymptotic distribution of
u for large N for critical EP with @, >0 and €=0. Define a},

aé, and N! analogous to the definitions of «;, a,, and N in
Egs. (41) and (B7). The derivatives of ¢'(x) in Eq. (50) at
x=0 are given by

Ny 1 1 —u/N
@) =g @ (D12)
and
ISV _n (1 _M/N)z
(¢)"(0)=¢g (u/N)—1 i)’ (D13)
and we get
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N'=N+ O(u/N) (D14)
and
al=a;+(a,— 1 -2a)u/N+OW?N?. (D15)

For critical networks, with a;=1, we get N=N/ a, and

al=1-2u/N+ O(u?N?). (D16)
Insertion into Eq. (B27) yields
PLo(N —u,0;N) = N-"35(0,2N*u) (D17)

for u<<N.

Because Q(x) <1 with equality if and only if g(x)=x, P,
vanishes exponentially, as N goes to infinity, for any fixed
u/N such that g(u/N) # u/N. For a typical network with a,
>0 at the EP transition, the only solution to g(x)=x is x=0.
For such a network, the large N behavior of P, y is found by
expanding Q(x) around x=0. To the leading nonvanishing
order, we get

2.3
which yields
u’ .
Py(u) = p(u)exp(— T)Pcc- (D19)
2N?
Hence,
~ W3 ~
Pu,N(u) ~ N—l/3p(u)exp(— —~)p~(0’2N—2/3u)’

2N?

(D20)

with asymptotic equality for large N. The probability density
P(i) for the distribution of #=N"23y as N— o approaches
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exp[— (1/2)u

~3
) 1

(D21)
APPENDIX E: EXACT RESULTS

A network with g(x)=x is critical for all x. For such a
network, G(x)=1 for all x and Plcc(n,€ ;:N)={/n. Hence,
Eq. (57) yields

pn)p(N = n) (n,€) €

P = El
n,N(n) p(N) T(N,e) n ( )
C(N=€\n" (N =)™
:_< )% (E2)
n\n—-¢{ N
For n and N satisfying n>1 and N-n> 1, we get
Iy
€ VN
Py n(n) = (E3)

\/;T n\n(N-n)

In the special case €=1, P, y(n) is the distribution of the
number of predecessors to an element in a random map. This
distribution, which is consistent with Eq. (E2) for €=1, was
obtained in Ref. [37] and restated in Ref. [36].

For completeness, we provide an explicit expression for
the distribution of avalanche sizes in the case that g(x) is a
first order polynomial. From Eq. (57), we get

Pn,N(n) = Pu,N(u)
nn—é’uu N—¢ ¢
~ NV (n— 4 )(g(O) " ;)

» (ug(O) +ng(1))"'f<nq(0) +uq(1)>"_

n

u

(E4)
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